
Senior Design May '23 - Team 10

Project DeepLearner
An Interactive Embedded ML Educational Experience

Introduction

2

● Topic for our project: machine
learning for embedded systems

● Purpose is expanding ISU curriculum
● Early searches led us to explore the

DeepRacer by AWS.
● DeepRacer is a great platform for

learning about reinforcement learning
without getting bogged down in
details.

Machine Learning
for embedded
Systems

3Project DeepLearner

What is the AWS DeepRacer
An educational tool for machine learning.
• The DeepRacer is an electric car built specifically for autonomous driving.

• It teaches students about reinforcement learning by letting them easily upload

a reward function and train machine learning models.

• Main focus on the DeepRacer League but also allows for custom projects.

• DeepRacer also has a very large, flourishing community with lots of open

source software.

4Project DeepLearner

Adapting the platform for an educational environment created a few tasks:

• Develop labs/activities involving machine learning

• Create a platform separate from AWS services for training models on local

machines

• Create a user friendly interface

Adapting DeepRacer for a classroom

5Project DeepLearner

Implementation and Architecture

A Tale of Two Sides
The Education Implementation

• Needs to serve as introduction to ML
and related topics for students.

• Various labs centered on our
DeepRacer Environment Platform.

The Environment Implementation

• Needs to provide an environment to
train, evaluate, and race DeepRacer
models.

• A platform for students to implement
DeepLearner labs.

7

Simulated DeepRacer Training on the DeepLearner Platform

7Project DeepLearner

8Project Deep_Learner 8Project DeepLearner

DeepLearner Labs
Educational Implementation

● Introduce Required ML concepts
○ Reward Function, parameter estimation,

etc.
● Familiarize students with the DeepRacer bot
● Create reward function

○ Observe effect of training time
● Encourage additional interaction with

Student vs Student race
● Interact with embedded programming

9Project Deep_Learner 9Project DeepLearner

Concept
The DeepLearner Platform

An Interactive, Educational Embedded Machine Learning
Platform for Iowa State students based on the AWS
DeepRacer. How do we do this without AWS?

Components
• Front-end GUI: A graphical user interface to provide a user

friendly way for students to interact with the DeepRacer
sandbox.

• DeepRacer Container: A virtualized environment that
contains all necessary DeepRacer components, including
the simulation environment and training/evaluation tools.

• REF (Racing Environment Framework): An application that
handles user requests for training/evaluation. Provides an
interface between the GUI and the DeepRacer container.

1
0

10Project Deep_Learner 10Project DeepLearner

Inspired by AWS’s official
implementation.
• Combines two open source projects

from the DeepRacer Community.
• Scripts are used to connect the two

projects, creating an environment.

Simulates a machine learning
environment.
• The Sagemaker service handles

machine learning and training/updating
the agent.

• The Robomaker service simulates the
environment and the robot.

• Local minio instance provides object
storage.

DeepRacer Container

11Project Deep_Learner 11Project DeepLearner

• The abstraction layer between our DR

server and the client (GUI).

• Controls and interfaces to the

DeepRacer container.

• Handles client’s requests.

• Provides authentication, data access,

and ease-of-use for our students.

• Built on the Django Framework.

Racing Environment Framework

12Project Deep_Learner 12Project DeepLearner

The GUI
The frontend exists for easier use and
file transfer

GUI provides services that we
enjoyed from AWS Deepracer

• Ability to train and evaluate
DeepRacer models in a simulated
environment

• Upload custom reward functions
and download trained models

13Project Deep_Learner 13Project DeepLearner

R
acing E

nvironm
ent Fram

ew
ork

Work Accomplishments

A User-Friendly Experience

15Project Deep_Learner 15Project DeepLearner

• Houses all components necessary to
train, evaluate, and race the DeepRacer
virtually.

• Simulates AWS services, locally -
avoiding costs.

• Can be installed on a local machine, or on
a server.

• Implemented using Docker for
dependencies.

DeepRacer Container

16Project Deep_Learner 16Project DeepLearner

Racing Environment Framework

17Project Deep_Learner 17Project DeepLearner

Lab Documents
Lab 1: Introduction to Machine Learning

• Introduce Required ML concepts
• Reward Function, parameter

estimation, etc.
• Familiarize students with the

DeepRacer bot
• Create reward function

• Observe effect of training time
• Encourage additional interaction

with Student vs Student race

18Project Deep_Learner 18Project DeepLearner

Lab Documents
Lab 2: Inside AWS DeepRacer

• Incorporate more embedded ideas
• PWM.sh file, GPIO pin identification,

etc
• Incorporate Amazon-Recommended

“Follow the Leader” project
• Well documented and tested

• Focus more on physical bot

19Project Deep_Learner 19Project DeepLearner

Primary Contributions

Embedded, Education, Research, and Development Team
Jazz & Caleb
● Prelabs & Labs

● Research materials

○ AWS documentation

○ ROS Documentation

○ Source Code

● Physical Track

21Project Deep_Learner 21Project DeepLearner

Machine Learning, Platform, and Cybersecurity Team
Jose Carlos Garcia & Benito Moeckly
• Front-End GUI

• User Experience

• Racing Environment Framework

• DeepRacer Container

22Project Deep_Learner 22Project DeepLearner

Challenges and Solutions

Educational Challenges
How to keep the information understandable?

• Start basic and give hands on examples
• Provide extra resources for learning

How to keep students engaged and entertained?
• Keep lab goals competitive to encourage competition
• Give clear goals for students to work towards

How do we tie machine learning to embedded systems?
• Explore the inner files of the DeepRacer
• Bridge the gap between what the model does and how the robot uses it

24Project Deep_Learner 24Project DeepLearner

Platform Challenges
Using AWS is expensive and not practical for ~300 students yearly ($42k).

○ Solution: train our robots locally. Similar solutions, with other purposes have
been done in the past [DeepRacer Container].

Students can easily break the newly constructed container.
○ Solution: Take control out of their hands, give them the same luxuries as

AWS would. Also, implement controls to limit access. [front-end GUI and
REF].

How do we give students their own environment to work on, independently from
other students?

○ Solution: Give each student their own container, directory, and provide
authentication. [REF and base DeepRacer Container]

25Project Deep_Learner 25Project DeepLearner

Challenge: Lack of Access to Underlying Hardware
The DonkeyCar

• Open-source Raspberry Pi Based platform
• Behavioral Cloning vs Reinforcement learning

• Reinforcement learning more applicable
• Cheaper at MSRP

• Supply Issues negate
• Well Documented

• Smaller Community

https://www.donkeycar.com/

26Project Deep_Learner 26Project DeepLearner

Future Work

Custom Robot in our Environment
Create a custom robot from scratch for use in our ML environment.

28Project Deep_Learner 28Project DeepLearner

Create dedicated database for REF
As the platform goes; so will it’s data needs.

Future Labs
There are many additional project ideas that can be implemented in
the physical world, as opposed to virtually.

Conclusion

The AWS DeepRacer Robot

Closing Thoughts

3
0

Machine Learning is the future and we need to catch
up - Benito Moeckly

Especially with programs like ChatGPT, we need to
learn how they work to stay up to date - Caleb DeBoef

There’s a lot of room for our application to grow and
fulfill the educational needs of students - Jazz Jacobus

Mind the gap -> Bridge the gap

In the information age, we need better accessibility to
platforms like the DeepRacer - Jose Carlos Garcia

What better way than for us to go open source, too?

30Project Deep_Learner 30Project DeepLearner

On your mark..
Thank you for your time.
At this time we’ll take questions!

Supplementary Slides

Benito Moeckly
ML & Cybersecurity Team

• Contributor to GUI design and implementation
• SSH, file transfer, front-to-backend communication
• Designed multiple frames
• Created initial prototype of GUI functionality and aesthetics

• Contributor to lab document and manual
• Lab 1 explanations of DeepRacer and reinforcement learning
• User manual

• Helped build track for physical demo of the DeepRacer
• Contributed to REF design
• Contributor to design documents, presentation, and poster

33Project Deep_Learner 33Project DeepLearner

Caleb DeBoef
Electrical Systems

• Helped contribute to Lab documents
• Specifically prelabs and ML background information
• Created Prelab.c file to explain parameter estimation
• Found related research papers to provide further information to students

• Researched DonkeyCar alternative
• Found which car configuration would work should it be implemented in the

future
• Helped order, plan, and construct the physical track
• Contributed to design documents, presentation, and poster

34Project Deep_Learner 34Project DeepLearner

Jose Carlos Garcia
ML & Cybersecurity Team
Designed and implemented DeepRacer container environment.

• Performed research with members of the DeepRacer community.
• Developed scripts, Docker container, and brought together other open source projects to produce our

environment.
• Implemented “nuclear-reactor rod” design for students.

Designed and implemented the Racing Environment Framework (REF).
• Sketched design for GUI interaction with the container.
• Initially, developed server app to stop rogue training sessions.
• Designed and developed authentication methods, user access, and sessions.
• Implemented other control methods within the framework, such as initial container setup, etc.

Contributed to the design and development of the front-end GUI.
• Developed current “frame” design of the GUI.
• Interfaced the front-end GUI with the Racing Environment Framework.
• Implemented user-friendly transitions around network related checks, operations, etc.
• Oversaw cybersecurity risks (built-in vs bolted-on).

35Project Deep_Learner 35Project DeepLearner

Jazzlyn Jacobus
Embedded Systems

• Helped contribute to Lab documents
• Wrote Inside AWS DeepRacer Lab
• Helped write Intro Lab
• Researched related materials

• Researched DeepRacer Evo hardware and connections for lab use and
created diagram
• created small bash script to demonstrate embedded programming

• Contributed to design documents, presentation, and poster
• Helped build track for physical demo of the DeepRacer

36Project Deep_Learner 36Project DeepLearner

